

Smart control for submersible equipment

Cycleop

Integrated solution

CycleOp controls the entire lifecycle of downhole equipment

Design and incorporation

- Selects the best design to fit the operating conditions
- Calculates and builds well model
- Helps generate and keep the warranty certificate

Operation

- Controls the actual equipment condition
- Alerts and predicts the deviations and suggests optimization activities
- Provides recommendations and tracks their efficiency

Failure cause identification

- Collects the required data for Quality Assurance Day
- Analyzes punch lists and determines the repair category
- Creates KPI report

Improvement

- Conducts reliability analysis and creates the rating
- Assesses the efficiency and coverage of the applied activities
- Forecasts activities for KPI improvement

CycleOp foresees the major industry challenges and helps resolve them

How to find critical information in-house?

- > E-based «Single-window» EIS
- > Instant access to the required information for decision making

How to assess whether the selected equipment and operational activities are efficient?

- > Precise diagnostics and issues identification
- > Knowledge base to stabilize and optimize the operation mode
- > Selection of the optimum design
- Recording the activities outcomes and efficiency analysis

How to control 1000+ wells per day and find the issue proactively?

- Unique set of expert and patented algorithms for failures forecasting and early warning
- > Option to prioritize just the wells with deviations

Whom to contact if you are left with the issue alone?

- Remote expert team to ensure continuous software enhancement and its incorporation at customers' facilities
- > Continuous support during operation via the platform interface

CycleOp will boost production by 2-3% and reduce the costs by 5-10%

System optimization

E-based «Single-window» EIS

Saved deferment

Prompt response to deviations

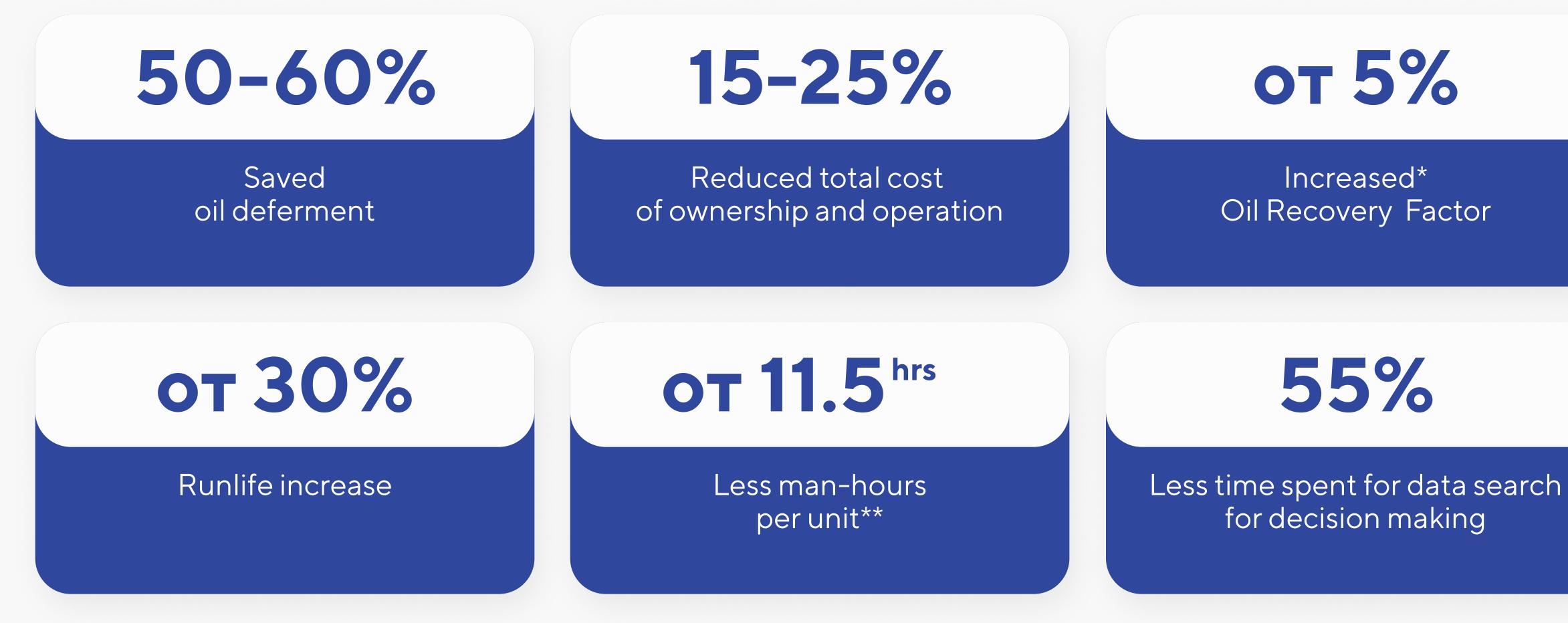
Reduced operational costs

E-based «Single-window» EIS

Optimized costs

Selection of optimum energy-saving equipment

ALMA Services Company


for equipment operation

functionalities contributing to the effect

Benefits in numbers

*with an IAM available

**managing the downhole pumping equipment lifecycle for all artificial lift methods: min. 8 hours per unit for other production methods

ALMA Services Company

The platform comprises 4 products

Equipment design selection

Reliability management

ALMA Services Company

Cycle p VMAP

Proactive monitoring and diagnostics of operational issues

Equipment accounting and flow

60 Algorithms to detect anomalies

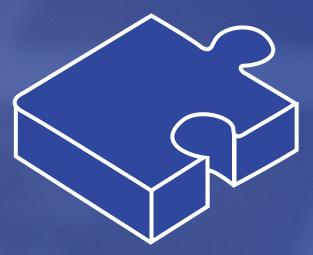
Incorporation of product(s) or the platform

Application of physical models combined with machine learning models

User-friendly interface

- > 24/7 data analysis using expert algorithms
- Customizable interface
- > Full or partial incorporation (individual products) is available
- Smooth integration with pre-installed systems
- Selection of unit measurement system

- Adjustable reports process teams
- versions
- > Just a few clicks to get a decision
- Multi-language interface


and dashboards for various

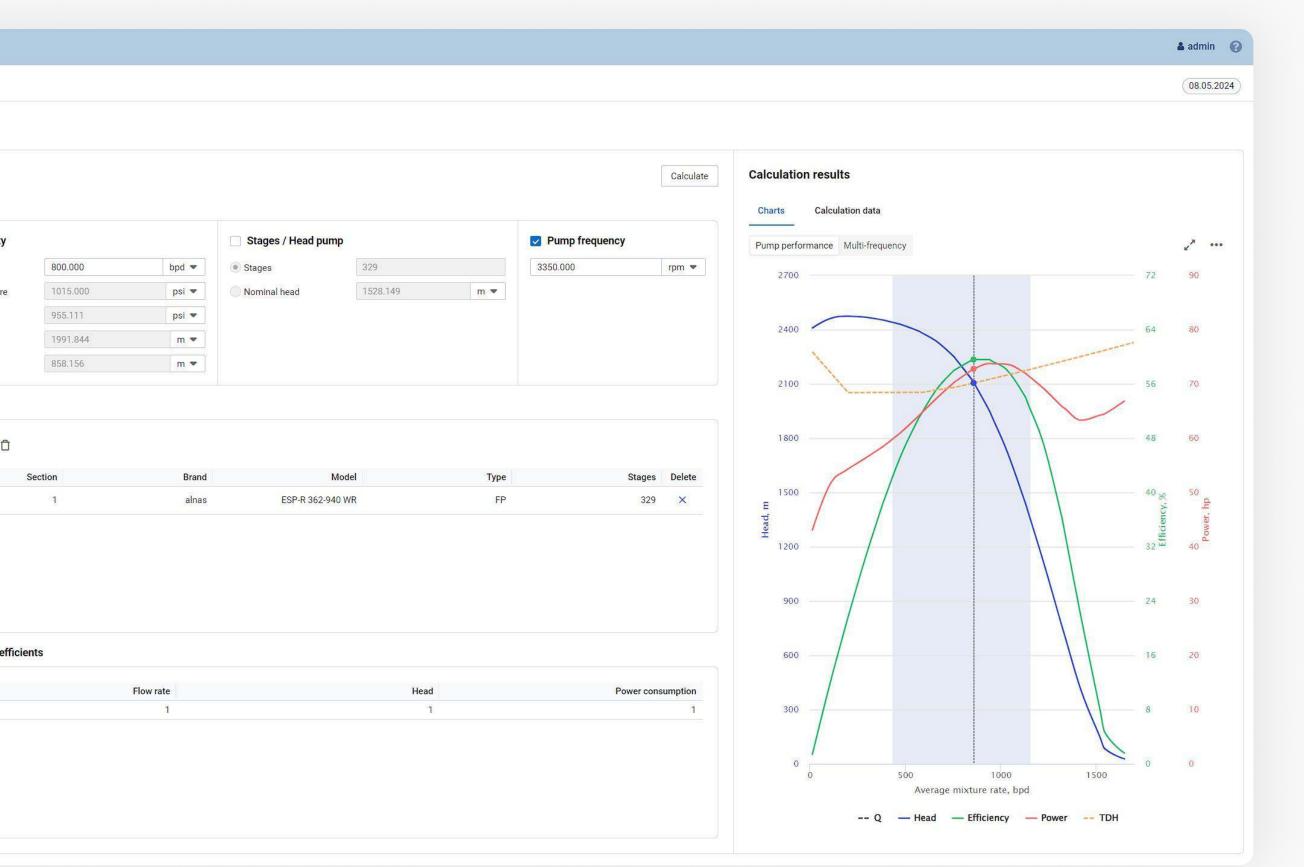
> Automatic upgrading of latest

all the required data to make

Equipment Design Selection

ALMA Services Company

- Solution Stratignergy Calculation of well operation model
- Selection of the appropriate artificial lift method: ESP, SRP, dual completion gas lift, natural lift, PCP
- PVT analysis based on Black Oil model as well as using lab data
- Multiphase flow design both for tubing and production casing
- Possible manual correction of MFP correlations
- Surface equipment design
- Selitable database of the major manufacturers of surface and downhole equipment



Key benefits CycleOp Design

- One product multiple production modes
- Availability-based selection of equipment
- Sensitivity analysis for equipment selection with accounting and KPI dynamics
- > Automatic selection of the new assembly design available during the operation of the existing one
- > Various operation modes: permanent, cyclic (time-based, parameter-based)
- Providing recommendations during selection of the equipment design
- Customizable final report

Designs storage	vell. ESP ···· +
WELL DATA	Pump
Well information	
Construction	Input data
Fluid	Calculation at
Inflow	Guidalation at
EQUIPMENT	Well product
Gas separation	Surface rate
Pump	O Bottomhole pre
Motor	O Intake pressure
Motorseal	O Dynamic level
Cable	C Level over pum
Transformer and Controller	
Cycle well	Pump section
Clereance	-+ Add
ENGINEERING TOOLS	
Choke	
Nodal analys	
Pressure traverse	
Complications	
REPORTS	
Detailed report	
Summury report	1
Custom report	Pump degradation
Sensitivity analysis	

Cycle Op

09

Early Warning and Diagnostics of Operational Issues

ALMA Services Company

4 product modules via single interface:

- V Virtual flow meter
- M Monitoring and control of the actual condition of downhole equipment
- A Anomalies detection using instant and trend analysis
- **P** Prediction of failures using ML models

Extra:

- Visualization of mnemonics for a well with performance indication
- Sust of operational and business processes based on the Company's role model that ensures flexible process automation
- Management of operational requests
- Provision of required parameters to select the next ESP design for the well

Key benefits

- Monitoring and diagnostics of operational issues for ESP, SRP, PCP
- > Evaluation of head and rate deterioration
- Forecasting of production gain due to optimization activities
- **Calculation of parameters:**
 - BHP
 - ESP suction temperature
 - Dynamic fluid level
 - Well productivity index
- > Measurement of production rate in remote standalone wells with limited access

Cycle Op

HPX 2 500 2 0 0 0 1 500 Σ エ 1000 500 0 200 100 300 Q, м3/сут 🥚 Рабочая точка — Заводская — Расчетная

Скважина Параметр Значение Нефтяная Тип скважины Дл Пласт Статус ТМ В работе Статус OIS В накоплении

Оборудование

Параметр	Значение
Типоразмер	ЭЦН(НГА)5А-35-2500
Производитель	ЭПУ Сервис

Параметры работы

Параметр Qж (ML-модель), м³/сут	Значени
Qж (ML-модель), м³/сут	114,1
Qж (Физ. модель), м³/сут	114,1

\downarrow V	Вид	\checkmark	
еньшаетс	Анализ отклонений		01
еличивае	Анализ отклонений		01
еличивае	Анализ отклонений		01
еньшаетс	Анализ отклонений		01

О Длинное название, которое н...: 114,15

Дебит жидкости (замер), м³/... : 114,15

Qж (МL-модель), м³/сут: 114,15

• Qж (физ. модель), м³/сут: **114,15**

Давление на приеме, атм: 54,15

Частота, Гц: 54,15

- ~~ (i) ····

Virtual measurement visualization

Approaches comparison

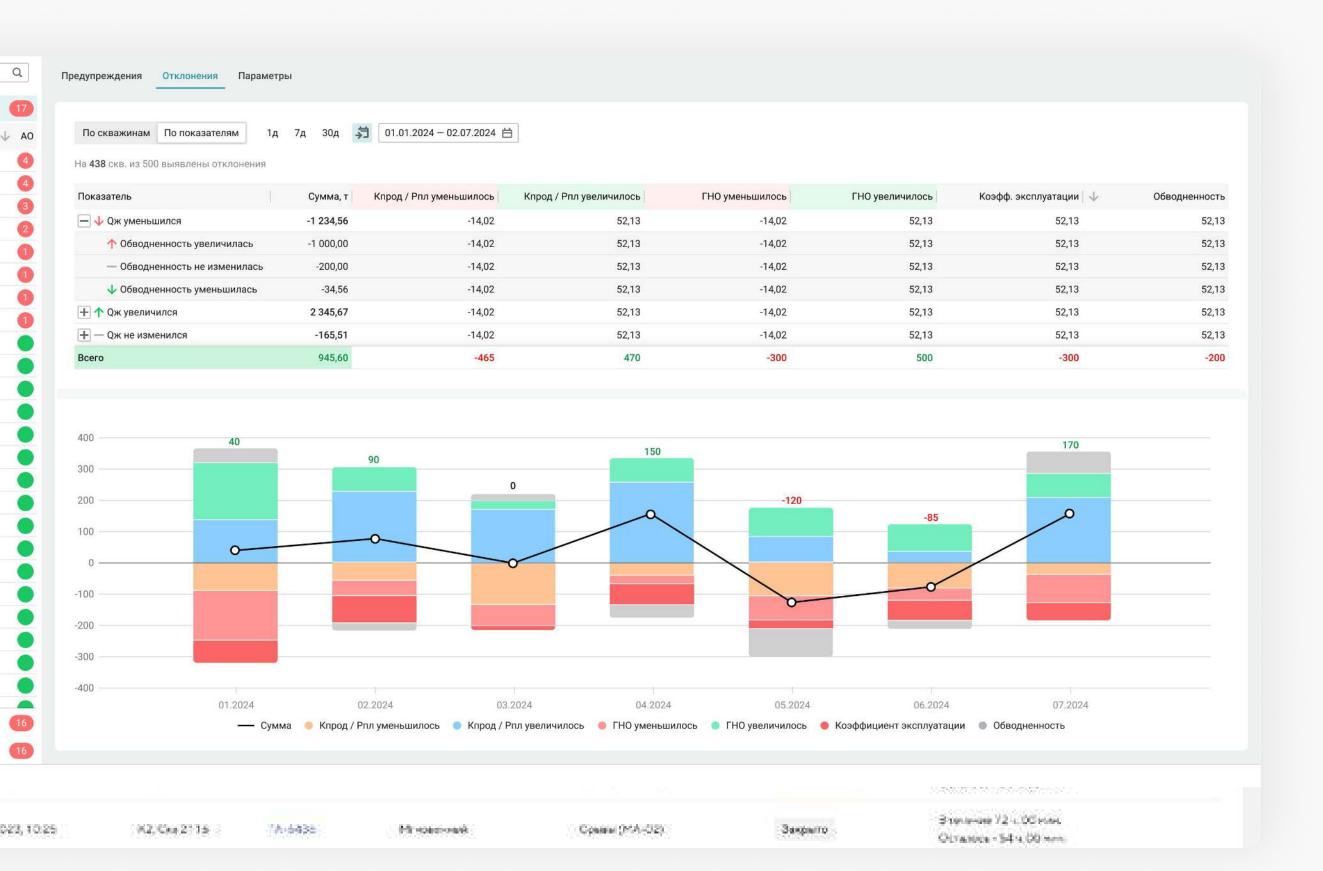
Current practice

- In case the group metering station is not available, a high-cost mobilization of a mobile station is required
- If rate deviation is revealed a request is raised to conduct a non-scheduled measurement to confirm the actual parameters
- > Physical measurement may be impossible or limited if there are complicating factors such as paraffins, high pressure, solids
- Wells measurements take place at least 5 times per month

Cycle

CycleOp practice

- Virtual production rate is available online (at every data refresh operation)
- Incompliance of the actual vs scheduled parameters becomes known at the time when the deviation occurs
- Sufficient time is available to recover the scheduled operation mode, implement optimization activities or plan preventive actions



МиА – Monitoring, actual condition control, anomalies detection

Key benefits

- **Single window** for monitoring numerous units
- > User-friendly navigation between wells and configurable wells prioritization list Critical is first priority
- Customized list of key parameters to display based on specific production tasks
- > Analytical algorithms operating in real time
- A warning alert, with the ability to trace the cause for the deviation, study the system recommendations and plan corrective actions

Скважина	↓ Куст ↓ ī	7 J 0 w J	Он	Обв
5012	1	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	3	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	84	84
5012	2	284	284	284
5012	2	284	284	284
	^	001	NOC	201
> Южное	месторождени			

МиА – Monitoring, actual condition control, anomalies detection

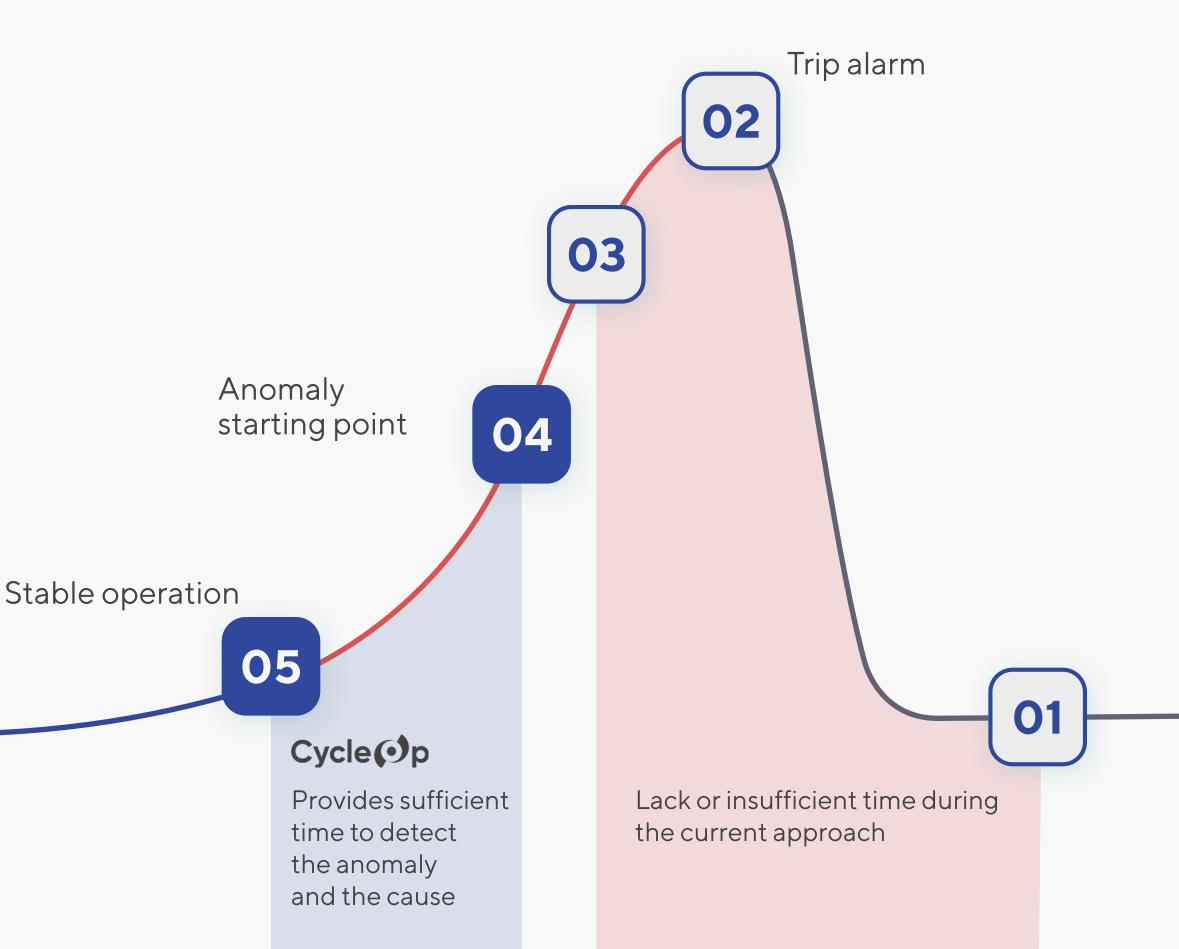
Current practice

The issue becomes known during the walk rounds

Trip alarm comes to the dispatcher workstation

Critical value (emergency) alarm-minimum time for response

CycleOp practice


Instant analysis: analysis

of the parameter dynamics and forecasting the time when it comes close to the critical value. More time for response

05

Trend analysis

- analysis of cumulative change of several parameters: fast detection of both the anomaly and the cause Sufficient time to correct the operation mode

МиА – Monitoring, actual condition control, anomalies detection

Applied algorithms

Trend analysis

Complications:

- > Wax buildup on the tubing internal walls
- > Excessive gas content
- Solids or scaling on ESP stages
- Solids or scaling on ESP suction
- Scaling on motor body
- Pumping of viscous fluid

Leaking string:

- Leaking tubing w/o packer
- Leaking back pressure valve
- Leaking tubing above the packer
- Leaking tubing under the packer

Operation:

- > Wellhead pressure increase
- > Annulus pressure increase
- Annulus pressure reduction
- Reduction or increase of reservoir pressure and productivity index
- > Water cut increase
- > Cyclic mode

Submersible equipment:

- Insufficient head
- > Stages wear
- Frequency reduction below the recommended value
- Broken shaft
- Reverse rotation

Surface equipment:

- Clogged back pressure valve
- > Full valve closing on the surface
- > Choke diameter increase

CycleOr

Close to trip settings

- > Low suction pressure
- > Low fluid level above the ESP suction
- > High motor temperature
- > Low resistance
- > High linear pressure
- > Annular pressure higher than the linear pressure
- > Operating current higher than the rated value
- > Current disbalance
- > Underload
- > Overload
- > High voltage
- > Low voltage
- > High scale inhibitor residual

Instant analysis

- > Wax buildup and increased gas production
- Solids
- > No flow
- > Operating point at the recommended range
- > Failed telemetry readings

15

Key benefits

Calculation of remaining operation life

Calculation of health index for each well

01

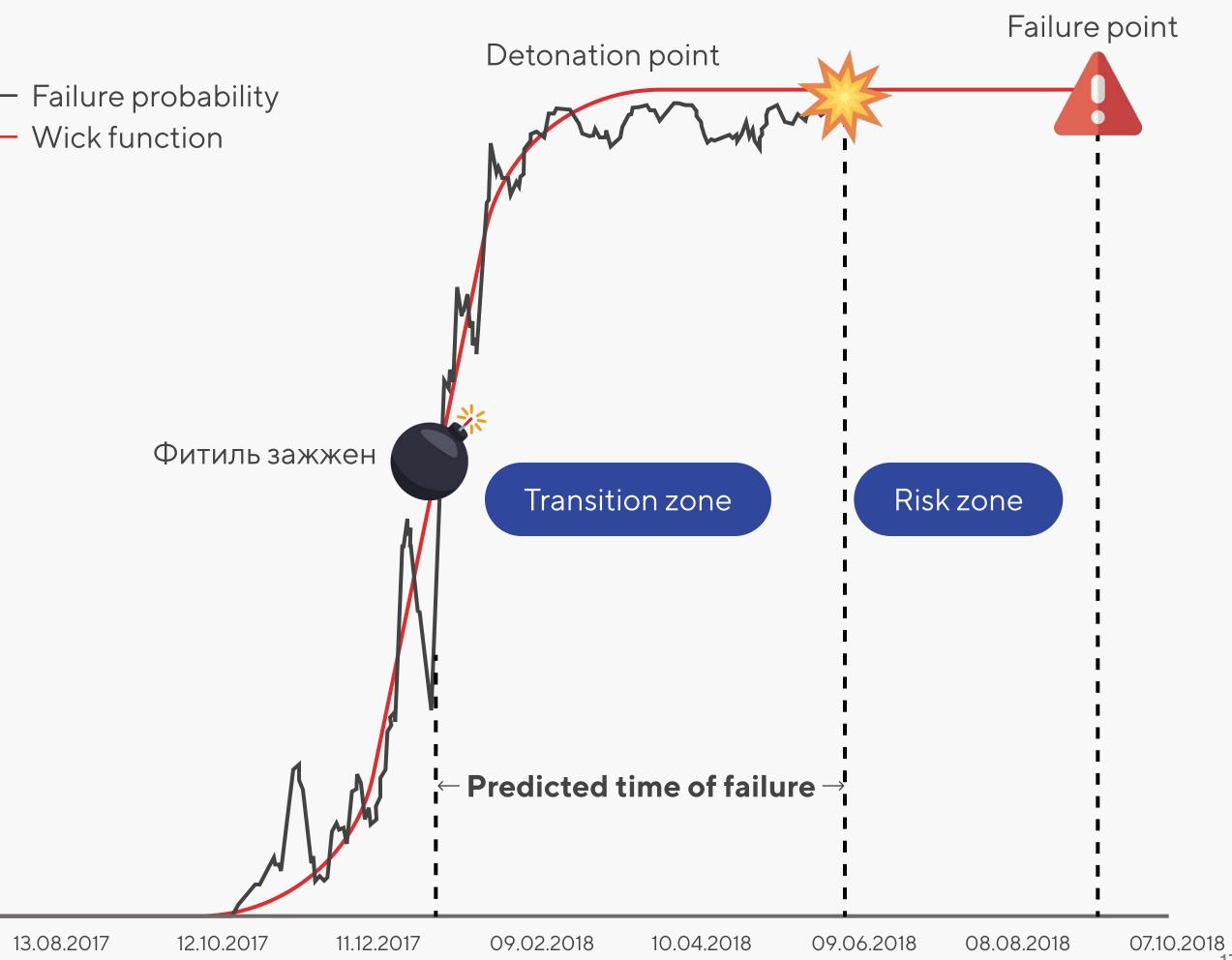
Proactive diagnostics of downhole pumping equipment deviations using expert algorithms and providing efficiencybased recommendations

ML-based prediction of downhole equipment trips and failures, for SRP-using well dynamography

Automatic input data validation

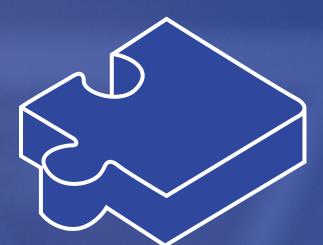
Model learning on incoming data

Building theoretic dynagraph (load curve) using physical digital twin with account of dynamic loads



Determining well candidates for optimization

Calculation of failure probability: the wick function concept


The developed model predicts probability of ESP failure	100%	
Probability dependence on time has a particular shape	80%	
Failure probability can be approximated by the wick function	60%	
	40%	
	20%	
	0% 14.06.2	2017

Cycleop ID

Equipment Accounting and Flow

ALMA Services Company

Complete technical information about the downhole equipment being used

- materials
- design
- specifications

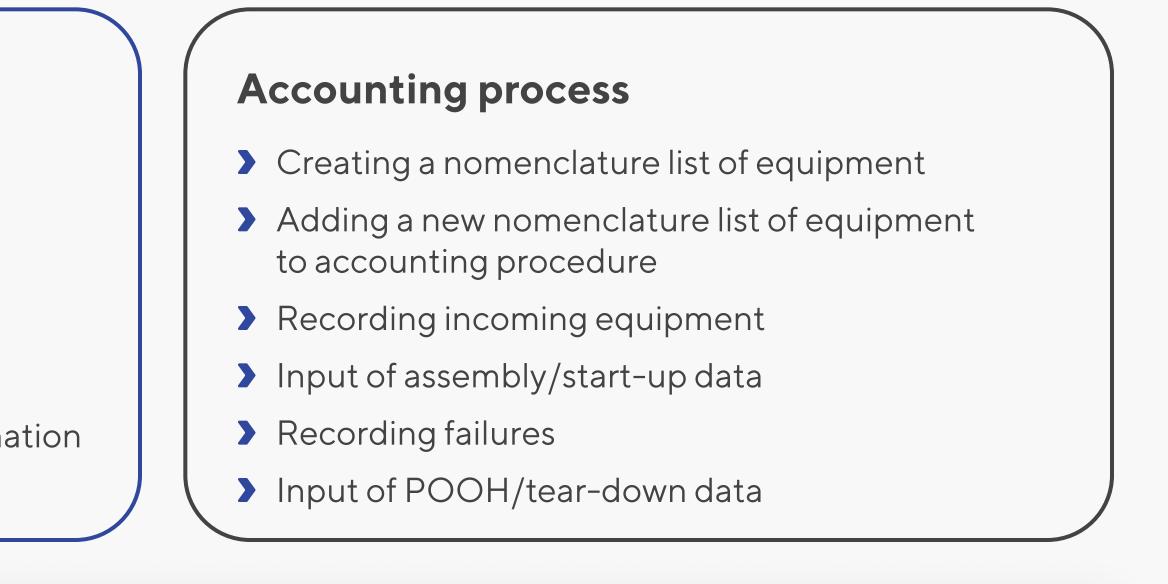
\rightarrow Information about wells, where equipment is used

- design
- profile

>> Digital warranty certificate

- Equipment configuration
- Assembly and RIH information
- Ramping up spreadsheet
- Tear-down data

>> Accounting of actual equipment flow from manufacturing till write off



E-document management

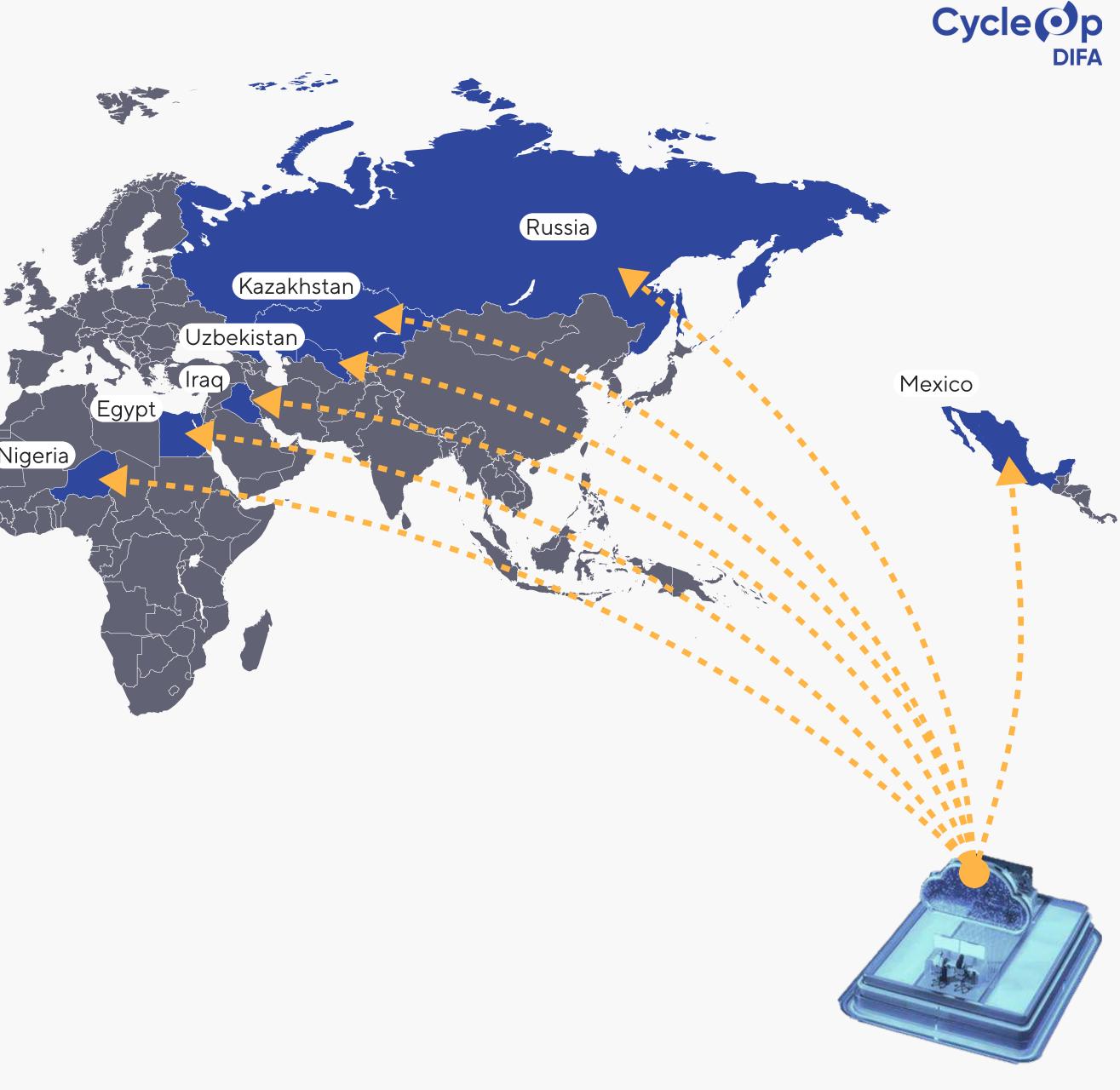
- > E-Request exchange
- > High level of information security
- Less mistakes than in 2 and more accounting DBs
- > Fast processing of the documents
- > Storing scanned documents
- > Transition from verbal (over the phone) to electronic coordination

∃ Cycle	OpID														¢	0	8
< Комплекта	ция																
						G	Состав	комплекта	_	2 Сопроводителы	ные документы						
Дата	01.0	1.2023 😫								уэцн							
Собираемый к	омплект УЭЦ	н		*						Оперативное состояние	Состояние по умолчанию	•	Местоположение	Cknag Nº4			٠
Состав комо	Состав комплекта									Kaneropsin Mosoe 🖤			МОЛ Буханцева Е.В.	буханцева Е.В.			
anterioria e comos								1722					Владелец	ПАО НК "РуссНефть"			*
Семции ЭЦН (1					·······			1000000	цактировать	Свойства комплекта			Признаки компле	кта			
Moderne	Проконодитель	Серийный номер	CONTRACTOR CONTRACTOR	Китегория	Terropunues	дизмитр кортуса	Подача	Cryneis	Номанальный народ	*Давление внутреннее до	тустички, МПа	\$	Вид внутренного г		1		÷.
3KD-KA 5-125	Новомет	4671183636	Пригодно « СПО	Hosee	эцнд 5-т25	92	125	96	641,28	•Диаметр внешний, что		\$	Группы прочности	ctate			•
эцнд 5-125	Fionomer	5363245211	Пригодно к СПО	House	жынд 5-125	97	125	105	201,40	*Длина, ч	1	\$	Исполнение НКТ		1		
Секции ПЭД (1	-2 and							Pea	цактировать	"Инвентарный номер			Исполнение по ко	ррозионной стойхости	Î.		(.
A Services C				14234333	2077-07/10	7233002	1000000000	weardow	11.5720.1020	Давление внутреннее исг	ныталельное, 1//1/	\$	Марка стали		8		•
	- Ontemportem Hy	Colonian Ideal	COCTORINAR COCTORINAR	Kateropes	Tetrogasterg	Дионяетр корлуса	Модность	Platpinesse	Patonak ros	Давления гидроиспытани	ot Mile	\$	Отечественное/И	ипортное			
3/JSC 56-9585	Hososer	4671183636	Пригодно к ОПО	Hasse	TI3/0HR0 103/2400	103	80	1.234	1234	Давление сыхнающее, М	Da		Производители об	CONDORTHING	17		1.44

Cycle

Reliability Management

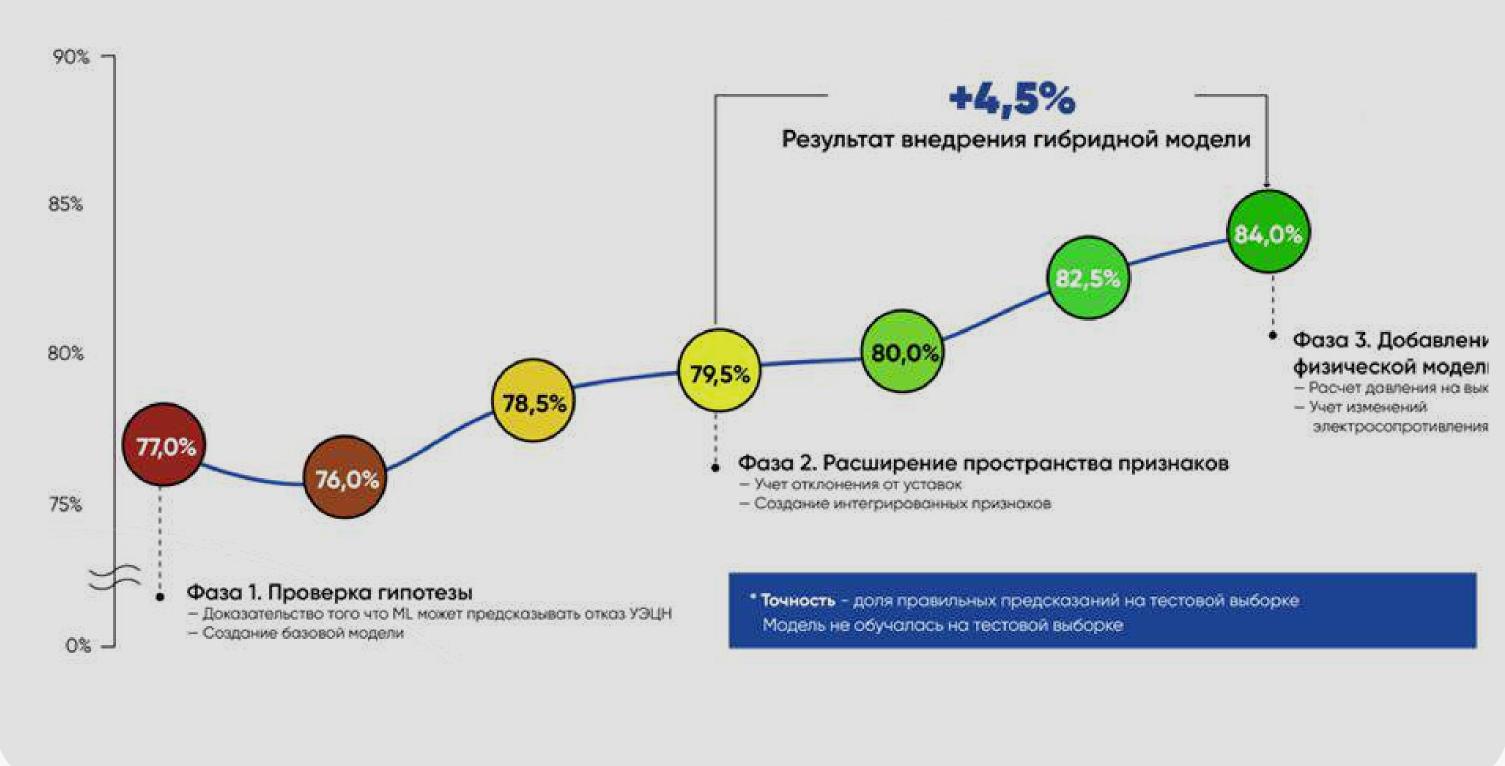
ALMA Services Company


- Failure cause database with integrated classifier by various industry standards
- Analysis of equipment reliability and providing recommendations related to usage of different types of equipment depending on operation conditions
- **Drawing the Quality Assurance Day reports**
- \supset Digital punch list for the main equipment elements
- Solution Notice State State
- > Chat with expert team to solve relevant issues

Remote Intelligent Monitoring Center (RIMC) has been launched in 2024

- ALMA RIMC center will provide 24/7/365 remote monitoring for ESP and surface rotating equipment
- > A team of highly qualified specialists is being formed including those with experience of working internationally
- Suitable for producing and service companies

21


Case: Salym Petroleum Development

Task

Failure prediction; failure cause prediction; health index

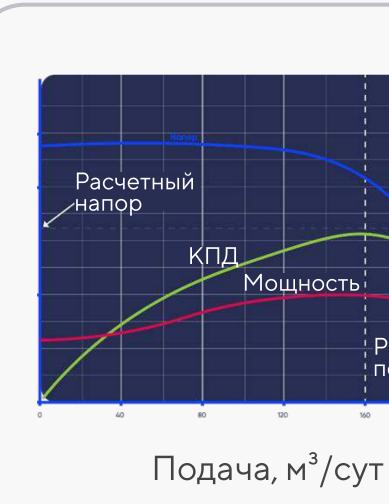
Solution

- Data on 233 failures of 4 types
- > 69 process parameters for each well + data on well design, ESP data sheet information, failures and trips data, etc.
- > Usage of integral tests
- > Hybrid model, parameters calculated using physical models are original features of ML model (engine cooling efficiency, pump discharge pressure, telemetry data recovery)

Result

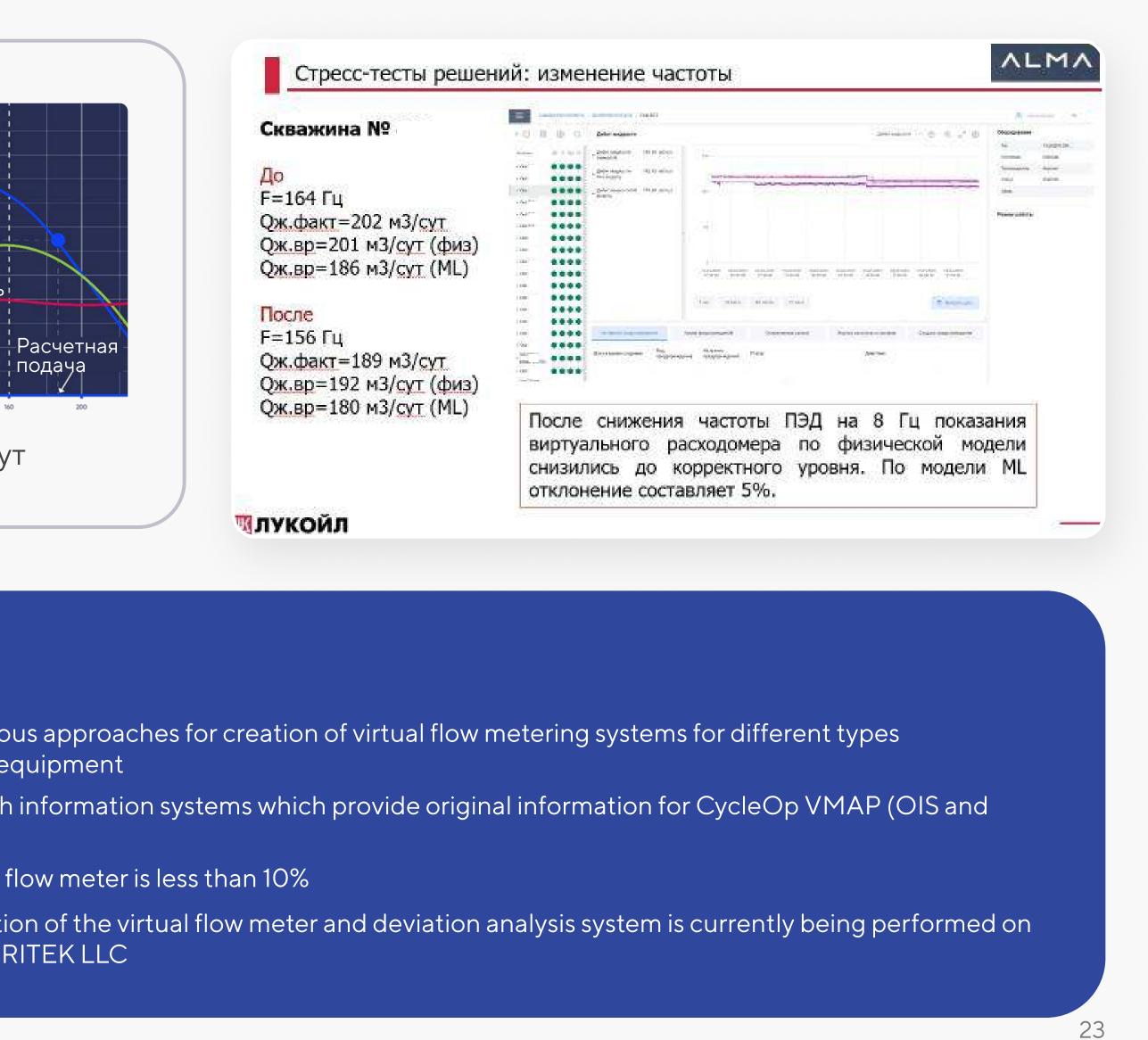
ightarrow The model accuracy is 84%

> The second phase of the pilot project is currently being implemented


Case: LUKOIL PJSC / Ritek LLC

Task

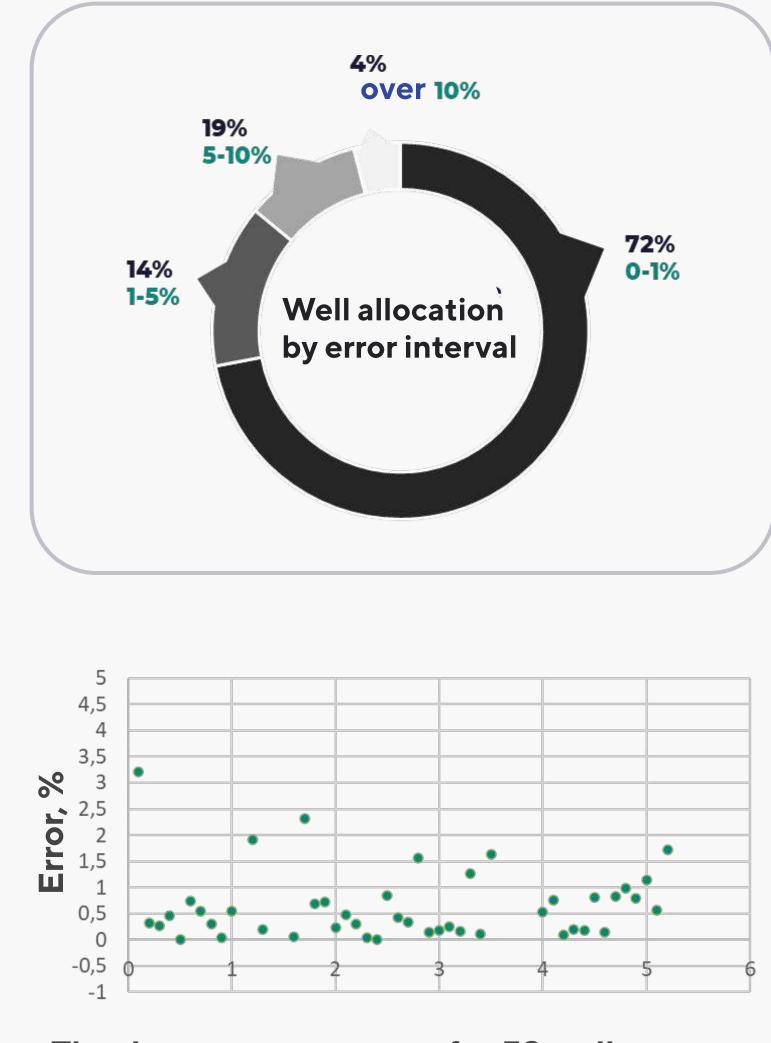
Development of the System prototype for virtual flow metering and well stock operation analysis, designed to study various approaches to determine production rate and to monitor wells


Solution

- Developed and implemented CycleOp VMAP-based software which provides the physical model of virtual flow meter and ML model for ESP
- Improved CycleOp VMAP module of Instant analysis of downhole pumping equipment condition to account for equipment specific features and LUKOIL Mid-East Limited conditions. Improved module was deployed in IT-infrastructure of LUKOIL Mid-East Limited

Result

- > Performed tests of various approaches for creation of virtual flow metering systems for different types of downhole pumping equipment
- > Aligned integration with information systems which provide original information for CycleOp VMAP (OIS and Telescope)
- > Average error of virtual flow meter is less than 10%
- > Full-scale implementation of the virtual flow meter and deviation analysis system is currently being performed on the whole well stock of RITEK LLC


Case: LUKOIL Mid-East Limited

Task

Development of virtual flow metering system and proactive monitoring and diagnostics of downhole pumping equipment

Solution

- Developed and implemented CycleOp VMAP-based software which provides physical model of virtual flow meter and ML model for ESP
- Improved CycleOp VMAP module of Instant analysis of downhole pumping equipment condition to account for equipment specific features and LUKOIL Mid-East Limited conditions. Improved module was deployed in IT-infrastructure of LUKOIL Mid-East Limited

The dots represent error for 53 wells

Result

For 86% of the wells - calculation
error of virtual flow meter is less than
5%

For 72% of the wells - calculation error of virtual flow meter is less than 1%

For the whole well stock - calculation error of virtual flow meter is less than 1.8%

- Confirmed correct functioning of 4 algorithms of the CycleOp VMAP instant analysis module
- Aligned integration with information systems which provide original information for CycleOp VMAP (OSISoft PI)

24

We are ALMA group of companies

200+ Employees founded in 2017

> ALMA Services Company (Moscow):

an accredited IT-company in the Russian Federation specializing in software development and incorporation

NAFTA Expert

(Perm):

development of unmanned management concepts, digital transformation, integrated modelling

> ALMA Consulting Expert (Moscow):

business-process engineering, industry benchmarking

35+ Implemented projects for LUKOIL

Cycleop

Solving challenges with CycleOp

Polukeev Dmitri Ivanovich dpolukeev@almaservices.ru www.almaservices.ru

